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We resolve the disturbance structures that destabilize steady convection rolls in 
favour of a time-periodic pattern in two-dimensional containers of fluid-saturated 
porous material. Analysis of these structures shows that instability occurs as a 
travelling wave propagating in a closed loop outside the nearly motionless core. The 
travelling wave consists of five pairs of thermal cells and four pairs of vorticity 
disturbances in the case of a square container. The wave speed of the thermal 
disturbances is determined by an average base-state velocity and their structure by 
a balance between convection and thermal diffusion. Interpretation of the ‘exact ’ 
solution is aided by a one-dimensional convection-loop model which correlates (if 
point of transition, (ii) disturbance wavenumber, and (iii) oscillation frequency given 
the base-state temperature and velocity profiles. The resulting modified Mathieu-Hill 
equation clarifies the role of the vertical pressure gradient, induced by the 
impenetrable walls, and the role of the base-state thermal layer. 

1. Introduction 
When heated moderately from below, a closed container filled with a fluid- 

saturated porous material exhibits a transition from steady to  time-periodic 
convection as the temperature difference across the container (a Rayleigh number R) 
is increased. We study this steady-to-oscillatory transition for two-dimensional 
motions in rectangular containers with emphasis on the square container. 

Using an eigenfunction expansion in conjunction with a numerical branch- tracing 
technique for the square box we have previously obtained (i) the point of transition 
to time-periodicity, R, = 390.7, (ii) the frequency of oscillation at  transition, 0, = 
82.8 cycles per dimensionless time, and (iii) the detailed structure of the destabilizing 
disturbance, results that have been reported in summary form (Aidun & Steen 1986, 
1987). The value 380 < R, < 400 has been known for some time (Caltagirone 1974; 
Schubert & Straus 1982) and the frequency of oscillation a t  transition has recently 
been confirmed independently (Kimura, Schubert & Straus 1987). The results (iii) are 
new as far as we are aware, made possible by our numerical approach which is 
distinguished from more conventional finite-difference, finite-element, spectral, and 
pseudo-spectral methods by its ability to capture the structure of infinitesimal 
destabilizing disturbances at points of bifurcation. 

The structure delivered by the ‘exact’ solution shows a number of disturbance 
cells that propagate with the base flow in a closed loop around the square domain. 
The size and strength of the cells varies with position around the loop. To aid in 
capturing the heart of the physics and to hone our understanding of the instability, 
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we seek a model that can predict (i) the point of instability, (ii) the frequency of the 
disturbance and (iii) the wavenumber of the disturbance given a simple measure of 
the growth and distortion of the base flow as it depends on Rayleigh parameter. The 
model we develop is a convection-diffusion equation on a one-dimensional domain, 
the circle. The model’s success in predicting properties (i), (ii) and (iii) as they depend 
on the aspect ratio of the container is qualified only by the somewhat ad hoc nature 
of steps involved in its derivation. 

Previous investigations, both experimental and numerical, have considered the 
oscillatory instability within two contexts the saturated porous medium and the 
Hele-Shaw cell. The formal correspondence between the porous medium and the 
Hele-Shaw problems has severe limitations which have been discussed in the 
literature (Hartline & Lister 1977 ; Kvernvold 1979 ; Frick & Clever 1982 ; Koster & 
Muller 1982); however, for the oscillatory transitions that we consider the two 
systems are in a range of parameters for which the correspondence is close, if not 
exact. 

Early experiments concerning the transition from steady to time-periodic motion 
came from those studying convection in the porous-media system. Combarnous & 
Lefur (1969) seem to have first observed a ‘fluctuating’ state in experiment and 
thereby inferred such a transition. Further observations in saturated porous beds 
(Caltagirone, Cloupeau & Combarnous 1971) and in the Hele-Shaw cell (Horne & 
O’Sullivan 1974) established that the convection patterns both below and above the 
transition can be two-dimensional ; a two-dimensional fluctuating motion can replace 
a steady roll-cell. More recent experiments in Hele-Shaw slots (Koster & Muller 1980, 
1981, 1982, 1984) provide more details of this and higher transitions. Noteworthy 
among Koster & Muller’s observations is the identification within the regime of time- 
periodic flow of a t  least two types of oscillations distinguished by different structures. 
This supports results from the numerical work of Caltagirone (1975), Horne & 
Caltagirone (1980) and Frick & Muller (1983) who report that qualitatively different 
oscillatory motions can be realized for fixed values of the parameters; the motion 
that is selected depends on ‘initial conditions’. Frick & Muller (1983) indicate that 
one type of calculated oscillation grows from a small-amplitude sinusoidal variation 
a t  the onset of time-dependence while the other type is consistently characterized by 
large-amplitude oscillations. These two numerically predicted motions are matched 
to two oscillating structures which have been observed in particular experiments. 
The Frick & Muller (1983) work is noteworthy for the tight correspondence drawn 
between experiment and simulation. 

The oscillations we analyse are limited to those that arise from instabilities of the 
‘primary ’ branch of steady convection patterns. A thought experiment defines the 
notion of primary branch. Suppose we slowly increase the Rayleigh parameter from 
below convection onset and suppose that we can shield our system from all but 
infinitesimal disturbances. There will be a first transition R, to a steady roll-cell 
pattern (Lapwood 1948) which will subsequently grow in strength and distort as the 
Rayleigh number is raised. We call this set of patterns the primary branch of 
solutions. The system will remain stable until a second transition R, where an 
oscillatory motion will replace the steady finite-amplitude roll-cell. The second 
transition from the primary branch is always one to  a time-periodic motion. It is well 
known for a two-dimensional system that the horizontally unconJined layer is 
susceptible to only ‘ Eckhaus ’ (or ‘sideband ’) and oscillatory instabilities (Kvernvold 
1979). However, for a system with sidewalls the Eckhaus instability manifests itself 
as an instability to finite-amplitude disturbances ; the sidewalls allow only discrete 
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wavenumbers and the sideband instability is thereby filtered. Therefore, although all 
the convection patterns we study are stable to small disturbances below transition, 
in many cases they are not stable to finite-amplitude disturbances there; these 
physically relevant finite-amplitude instabilities are not treated here. Furthermore, 
this study does not consider instabilities of steady patterns on branches that are not 
connected to the conduction solution. Of course, stable time-periodic motions can 
arise through means other than transitions from steady patterns ; these motions are 
also not considered. 

Relevant numerical studies are more numerous than the extant experimental 
observations which have been highlighted above. Caltagirone (1974,1975), motivated 
by the observations of Combarnous & LeFur (1969) and Caltagirone, Cloupeau & 
Combarnous (1971), mapped out the boundary of instability to oscillations as a 
function of aspect ratio of the rectangular container using a Galerkin technique. In 
addition, by solving many initial-value problems using a finite-difference scheme, he 
obtained the structure of fluctuating patterns above the stability boundary. 
Although Caltagirone (1975) identifies the thermal boundary layer as source of the 
destabilizing disturbance, he neither resolves the detailed structure, nor reports 
wavenumbers or frequencies. Horne & O’Sullivan (1974) solve for the fluctuating 
states using a finite-difference technique. They describe the instability process as an 
interaction between the unstable thermal layer a t  the bottom of the box and the 
descending thermal disturbances consisting of cold parcels of fluid coming from the 
unstable layer a t  the top of the box. The arrival of the cold fluid is said to ‘trigger’ 
the disturbance in the warmer layer. In  an ingenious attempt to distinguish the 
importance of triggering relative to thermal-layer instabilities, Horne & O’Sullivan 
(1978) calculate the motions in a rectangle with a permeable top and compare the 
periods and regularity of fluctuations with the case of the impermeable top. They 
conclude that an unstable thermal layer is essential to the instability and that the 
interaction with descending disturbances contributes to the regularity of the motion. 
For a Rayleigh number somewhat above the stability boundary, Horne & Caltagirone 
(1980) find that the point of origin of the instability in the thermal boundary layer 
determines which of two possible fluctuating states will be realized. One state 
consists of regular (periodic) and the other ‘irregular ’ oscillations. 

All these studies attempt to uncover from various perspectives the physical 
mechanism that is responsible for transition and these efforts develop a reasonably 
detailed understanding of the transition dynamics. Indeed, given that the principal 
tool employed in all these investigations is the solution of initial-boundary-value 
problems, via various finite-difference schemes, repeated over and over for various 
initial conditions, the resulting picture gives as much detail as can be expected. Yet 
characteristics at the heart of the transition process such as thermal-disturbance size 
and its relationship to frequency and to the particular point of instability in Rayleigh 
number are barely addressed. Our resolution of the disturbance structure, obtained 
by calculating the eigenfunctions corresponding to the critical eigenvalue of the 
linear operator governing small disturbances from the base state, opens the way for 
an analysis which first relates oscillation frequency to base-state velocities through 
disturbance size (wavelength), and then determines thermal-disturbance size as a 
balance between convection of the base-state temperature profile by disturbance 
velocities and diffusion of the thermal disturbances by conduction. 

The numerical work of Schubert & Straus (1982) and Kimura, Schubert & Straus 
(1986, 1987) has been primarily concerned with uncovering routes to chaos in the 
context of two-dimensional porous-media convection. Although little attention has 
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been paid to the underlying physical transition mechanism, they have accurately 
located the transition point and frequency of oscillation a t  transition to time- 
dependence as well as corresponding characteristics at a sequence of higher 
transitions. 

After formulating the problem we outline the numerical method employed and 
review the ‘exact ’ solution thereby obtained. On the basis of the numbers delivered 
by the ‘exact’ solution we justify splitting the linear disturbance equation into two 
separate balances : one a first-order wave equation that governs propagation of 
disturbances and the other a second-order elliptic equation that determines the 
structure of disturbances. This empirical observation is the key to the simplification 
provided by the model. The two equations decouple. Given a time-independent 
solution to the structure equation, the propagation equation can be solved using that 
structure as an initial condition. 

Attention turns next to the structure equation and model construction proceeds in 
two stages. The disturbance velocity has contributions from the disturbance 
buoyancy force and the disturbance pressure force and Model I, the first stage, 
neglects the influence of the pressure force. The structure equation is transformed 
from the two-dimensional square domain to a one-dimensional loop domain. The 
result is a Mathieu-Hill equation on the circle for the temperature disturbance. Here 
the Rayleigh number plays the role of natural wavenumber and parametric 
excitation is due to the vertical component of the base-state temperature gradient. 
The requirement that the disturbances must fit on the circle (i.e. be periodic) can only 
be met for certain Rayleigh numbers and base-state temperature gradients, values a t  
which diffusion of disturbances is just balanced by convection of the base-state 
profile. Model I correctly predicts the wavenumber of the disturbance and gives a 
reasonable estimate of the base-state temperature gradient given the critical 
Rayleigh number. However, i t  cannot predict the critical Rayleigh number. 

Model 11, the second stage of model construction, takes account of the pressure 
contribution to disturbance velocity. This effect shifts the spatial phase relationship 
between diffusion and convection and eliminates periodic solutions which otherwise 
exist a t  lower Rayleigh numbers. A modified Mathieu-Hill equation emerges. It 
predicts wavenumber and critical Rayleigh number given the development of the 
base-state temperature profile. The frequency of the disturbance is then obtained 
from the propagation equation given the dependence of base-state velocity on 
Rayleigh parameter. 

2. Formulation 
Two planes separated by a gap 1 are arranged horizontally relative to gravity g ; the 

gap is filled with a porous material and saturated with a fluid of viscosity v. The 
bottom plate is held isothermally a t  a temperature AT greater than the cooler 
isothermal top plate. For motions with low Reynolds numbers based on pore size, 
arbitrary deviations in velocity v ,  temperature 0, and pressure p from the motionless 
conduction state are governed by 

v*u = 0, ( l a )  

0 = - V p - ~ + R b k ,  ( 1 b )  

ae 
at 
-++R%*(VB-k) = V20. 
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The inertia term in the momentum equation ( l b )  has been neglected since it is 
proportional to the permeability K of the porous material which enters through 
Darcy's law and which is typically very small. The Boussinesq approximation 
couples the momentum equation ( 1  b )  to the energy equation (1 c )  and the Rayleigh 
number R E qp AT KlIK, v gives a measure of the coupling. Here /3 is the coefficient 
of thermal expansion of the fluid and K ,  is the effective fluidlsolid thermal 
diffusivity. k is a unit vector directed oppositly to  gravity. 

Scales of length I, velocity Rhrn/l, temperature AT, and time 1 ' H / K ,  are 
employed; H = p ,  C,,/p,C,, is the ratio of the heat capacity of the fluid-solid 
mixture to that of the fluid. 

The layer is confined by two vertical insulating walls separated by a distance hl 
which define a rectangular container of aspect ratio h. The boundary conditions, in 
summary, are specified by an isothermal top and bottom, insulated sidewalls, and no 
penetration of all containing walls. 

System ( 1 )  can readily be re-expressed as a scalar integrodifferential equation for 
the disturbance temperature 

ae 
- + R(0k + V[G*(VO* k ) ] )  * (VO - k )  = V20, 
at (2) 

where the Poisson equation with Neumann boundary conditions, 

-v2p = f ,  (3a )  

(3 b )  3 = 0 on all boundaries, 
an 

has solution 
p = -G*f, (4) 

which defines the integral operator G. For equation (2) the inhomogeneous term in 
(3a )  takes the form f = R;aO/ay. An explicit form of the integral operator is easily 
found after noting that p is the superposition of terms that are products of a cosine 
dependence in x and a cosine dependence in y. Here we have used a Cartesian 
coordinate system with horizontal coordinate x ,  vertical coordinate y and origin such 
that the sidewalls are at x = k i h  and the bottom and top are a t  y = 0, 1.  The 
linearized version of (2) has eigenfunctions (Beck 1972) 

Bi E cos [ (mx lh )  (x+$h)] sin n x y ,  ( 5 i )  

and corresponding eigenvalues 

where m = 0 ,  1 , 2 ,  ..., n =  1 , 2  ... and i = [ m , n ] .  

The numbering of equations ( 5 i )  and ( 6 i )  where i = 1,  .. ., co is an enumeration of the 
wavenumber pairs [m, n] which distinguishes each member of the infinite set of 
equations represented. 

A further transformation of the system uses the solutions to the linearized problem 
( 5  i )  in an eigenfunction expansion, 

03 

O ( X ,  y> t )  = C ai(t)Oi(x, y). (7) 
i=l 
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Substituting (7) into (2), taking projections on each of the modes ( 5 i ) ,  and using the 
self-adjoint property of the linearized equation to eliminate the V20-term following 
Rosenblat (1979), yields an infinite system of ordinary differential equations 
formally equivalent to system (l) ,  

- dai - - h,(R - R,) a, + RA,, uj u,, 
dt 

i =  1, 2, ..., co. 

The constants A, and Aijk are known in closed form as functions of h and can be found 
in Steen (1986). The first term gives the growth (decay) of the i th mode due to its 
linear instability (stability) and the quadratic term accounts for nonlinear mixing ; 
the implied sum over modes j and k extends over all pairs (i, k). 

For future use y e  record the special case of system (1) which governs infinitesimal 
disturbances 6, 0, 1; from a known steady solution fi, e, p of equations (1). 
Substitute 

into (1) and neglect O(e2)-terms to obtain 

3. Numerical method 
The infinite system ( 8 i ,  i = 1, 00) is truncated to an M-dimensional system (8 i ,  

i = 1, M )  by a strategy to be discussed below and the finite-dimensional system is 
treated as a bifurcation problem. Branches of steady solutions are curves in the 
(M + 1)-dimensional space of components versus Rayleigh parameter. Given a point 
on a branch, i.e. a solution a t  a particular Rayleigh number, neighbouring points are 
approximated by a pseudoarclength continuation method (Keller 1977 ; Doedel 
1980) and are calculated as solutions of the nonlinear algebraic system obtained by 
setting the time-derivatives in system ( 8 i ,  i = 1,  M )  to zero. These computations are 
performed using the code AUTO, a package for continuation and bifurcation 
problems in ordinary differential equations developed by Doedel (1980). The 
arclength-like parameterization allows turning points to be handled routinely. 

A calculation independent of the arclength continuation is used to test for stability 
a t  each point along the branch. The nonlinear system ( 8 i ,  i = 1, M )  is linearized 
about the known solution and the exponential growth or decay predicted by this 
linear operator is examined in the standard way. Instability is signalled when at  least 
one growth parameter (eigenvalue) has a real part which changes from negative to 
positive along a previously stable branch. The eigenvec:tor(s) associated with the 
critical eigenvalue(s) gives (give) the structure of the destabilizing disturbance(s) ; 
this is the structure associated with the new branch emanating from the bifurcation 
point. The stability calculation therefore involves calculating the eigenvalues and 
eigenfunctions of a linear system and is performed by a standard solver called from 
the AUTO package. 

We start the branch-tracing procedure on the null solution a t  a Rayleigh value 
where it is stable. For the square box the first instability occurs a t  R, = 4x2 where 
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FIGURE 1. The Rayleigh number at  instability of the primary branch R, verses order of truncation 
N as obtained from the numerical computations for the square box. The squares are Hopf 
bifurcations and the diamonds are turning-point instabilities. 

a single real eigenvalue becomes positive and the corresponding eigenvector indicates 
a structure with wavenumbers [m, n] = [ l ,  11 (cf. equation ( 6 i )  with h = 1 ) ;  results 
of linear theory are recovered a t  this step. The AUTO code is instructed to switch 
branches here to follow the growth of the steady single roll-cell which characterizes 
the primary branch. This branch remains stable until R, = 390.7 where a complex- 
conjugate pair of eigenvalues cross the imaginary axis in the complex plane. The 
imaginary part yields the frequency of oscillation of the disturbance. The 
eigenvectors corresponding to this Hopf bifurcation span a two-dimensional subspace 
within the phase space of system ( 8 i ,  i = 1, M )  and deliver the destabilizing 
disturbance structure of interest. 

So far, assuming sufficiently accurate numerics, the only approximation to the 
original governing system (1) comes with the truncation to  a finite number of modes. 
Our truncation scheme is guided by requirements (i) that sufficiently small 
wavelengths be included so as to capture the disturbance structure, and (ii) that  the 
total energy of the system be conserved. As described in Aidun & Steen (1987) 
requirement (ii) leads to a rectangular cutoff form where all terms with m < N and 
n < N are kept (the order of the truncation N is related to the number of equations 
M = Lfl(N+ 1)). Requirement (i) is met by increasing N until the point of 
bifurcation and the disturbance structure are negligibly influenced by further 
increases in N. Figure 1 shows how overtruncation can affect the numerical 
prediction of instability. Not only does the maximum wavenumber strongly 
influence the Rayleigh value R, a t  which the Hopf bifurcation is predicted for 
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R 

50 

100 

150 

200 

250 

300 

350 

400 

450 

500 

550 

h 

0.50 
0.67 
0.75 
1 .oo 
1.50 

0.50 
0.67 
0.75 
1 .oo 
1.50 

0.50 
0.67 
0.75 
1 .oo 
1.50 

0.50 
0.67 
0.75 
1 .oo 
1.50 

0.50 
0.67 
0.75 
1 .oo 
1.50 

0.50 
0.67 
0.75 
1 .oo 
1.50 

0.50 
0.67 
0.75 
1.00 
1.50 

0.50 
0.67 
0.75 
1 .oo 
1.50 

0.50 
0.67 
0.75 
1 .oo 
0.50 
0.67 
0.75 

0.50 
0.67 
0.75 

Present results Caltagirone (1975) 

TABLE 

N u  

1 .oo 
1.15 
1.39 
1.44 
1.15 

2.14 
2.60 
2.65 
2.65 
2.31 

3.24 
3.42 
3.42 
3.32 
2.93 

4.03 
4.00 
3.96 
3.81 
3.38 

4.58 
4.45 
4.39 
4.19 
3.73 

5.02 
4.82 
4.73 
4.52 
4.02 

5.38 
5.12 
5.04 
4.79 
(4.26) 

5.69 
5.40 
5.31 

(5.03) 
(4.48) 

5.96 
5.65 
5.54 

(5.25) 

6.20 
5.88 
5.76 

6.43 
6.09 

(5.97) 

lhlnax 

0.000 
0.140 
0.270 
0.300 
0.213 

0.281 
0.412 
0.457 
0.538 
0.566 

0.379 
0.487 
0.526 
0.603 
0.646 

0.424 
0.524 
0.560 
0.633 
0.683 

0.452 
0.545 
0.579 
0.648 
0.702 

0.471 
0.560 
0.592 
0.658 
0.713 

0.485 
0.570 
0.601 
0.664 
(0.720) 

0.495 
0.577 
0.607 

(0.668) 
(0.724) 

0.503 
0.583 
0.613 

(0.671) 

0.510 
0.588 
0.616 

0.515 
0.592 

(0.619) 

1 (continued on facing page). 
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R 

600 

650 

700 

750 

800 

850 

900 

950 

1000 

h 

0.50 
0.67 
0.75 

0.50 
0.67 

0.50 
0.67 

0.50 
0.67 

0.50 
0.67 

0.50 

0.50 

0.50 

0.50 

Nu 
6.63 
(6.28) 
(6.15) 

6.83 
(6.46) 

7.01 
(6.63) 

7.18 
(6.8) 

7.34 
(6.94) 

(7.49) 

(7.64) 

(7.78) 

(7.91) 

$max 

0.520 
(0.595) 
(0.622) 

0.524 
(0.598) 

0.528 
(0.600) 

0.531 
(6.02) 

0.534 
(0.603) 

(0.536) 

(0.538) 

(0.540) 

(0.542) 

? The maximum value of the stream function is rescaled by &. 
TABLE 1 .  Comparison of the Nusselt number Nu and maximum value of the stream function of the 
base state from our calculations with those of Caltagirone (1975) for various aspects ratios h at a 
sequence of Rayleigh numbers R. Parentheses indicate an unstable base state. 

5 < N < 16, but a t  N = 6 and N = 8 a qualitatively different transition via a turning 
point is predicted. This adds to the widespread evidence of the dangers of 
overtruncation. 

A further check on the accuracy of the numerical method comes in comparing the 
Nusselt number and the maximum value of the stream function $,,,,, for steady 
patterns on the primary branch with those reported by Caltagirone (1975) from his 
finite-difference calculation. Wherever comparison is possible, as listed in table 1, the 
agreement between results is within 0.5 ‘7’0. Caltagirone used a 32 x 32 mesh system 
for R = 50 and R = 100 and a 48 x 48 system for all other R. 

To check the accuracy of the calculated disturbance quantities we reconstruct the 
terms appearing in the disturbance equations (10) from their Galerkin app- 
roximations ( N  = 18) and find that (10) are satisfied pointwise to within 5 %  
everywhere in the box. The ten leading contributions to the two eigenvectors which 
characterize disturbances and their associated modeforms are listed in table 2. In  
summary, although the steps leading to the system (8i) are purely formal, solution 
of that system yields a temperature field O(x, y ;  t )  which satisfies the original 
governing equation (2) pointwise in the box a t  each time to within 5%. On this basis 
we have heretofore referred to it as the ‘exact ’ solution where the quotation marks 
reflect the degree of inaccuracy. However, we now drop the quotation marks. 

Our choice of basis functions for the Galerkin expansion, our selection of a 
truncation with a rectangular rather than a triangular form, and our use of the same 
set of functions both to  calculate the base state and to capture the disturbance 
structure all add inefficiencies to the method. On the other hand, the basis chosen 
allows all nonlinear interactions and spatial derivatives to be evaluated exactly for 
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Eigenvector 1 Eigenvector 2 

Mode Amplitude Mode Amplitude 

[4,21 0.623 [1,31 0.887 
P, 41 -0.579 r3,31 0.746 
[4,41 0.477 [3,51 0.463 
[o, 41 -0.445 R 2 1  0.402 

TABLE 2. The five largest components by amplitude and corresponding modes for the two 
eigenvectors that span the subspace where the Hopf bifurcation occurs 

1% 21 0.432 ~ 4 1  -0.247 

Aspect ratio 
h RP QPlR* 

0.5 825.7 1.7086 
0.67 569.9 1.4759 
0.75 506.1 1.4453 
1 .o 390.7 1.3308 
1.5 309.5 1.0400 

TABLE 3. Results of Rayleigh number Rp and frequency 8, a t  the onset of oscillation for 
various aspect ratios, from the exact solutions 

all aspect ratios. Furthermore the rectangular form of cutoff allows overall 
conservation of energy, and a single truncation set allows base states to be as detailed 
as disturbance structures. All contribute to the accuracy of the method. Here, we 
trade computing time and storage space for accuracy. Neither of the former are 
limiting factors in these two-dimensional computations. 

4. Exact solution 
The development of the steady base flow as measured by the heat transfer (Nusselt 

number) and the maximum value of the stream function are indicated in table 1 for 
five aspect ratios, 0.5 < h < 1.5. The point of instability R, and oscillation frequency 
52, are listed in table 3. Caltagirone’s (1975) estimates for containers other than the 
square box are consistent with these values. The stabilization which occurs with 
decreasing aspect ratio is expected since the smaller the container in horizontal 
extent the larger the driving force needed to produce thermal gradients in the base 
flow sufficiently large for instability. 

The structure of the base flow and temperature field a t  oscillation onset are shown 
in the centre plot of figures 2 (a) and 2 ( b ) ,  respectively. The flow circulates clockwise 
and accelerates sharply at the upper right and lower left corners after rejecting and 
accepting heat along the top and bottom surfaces. The cold downflow compresses the 
thermal boundary layer a t  the bottom right corner and in conjunction with the hot 
upflow from the opposite corner establishes a stably stratified core region (Figure 2 b ,  
centre). 

The destabilizing disturbance streamlines (figure 2a)  and isotherms (figure 2 b )  are 
shown in clockwise progression around the figure at intervals of of one oscillation 
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FIGURE 2(a) .  For caption see next page. 

period. Surpluses of vorticity which correspond to clockwise rotation and surpluses 
in temperature are indicated with solid lines. A superposition of vorticity and 
temperature disturbance fields shows that upflow streamline disturbances generally 
coincide with surpluses in temperature disturbances and downflow disturbances with 
deficits in temperature, confirming the interpretation that these are small convection 
cells superimposed on the base flow. The disturbances strengthen while traversing 
the surfaces of heat transfer and weaken along the adiabatic surfaces. 

At any instant, temperature and vorticity disturbances satisfy an antisymmetry 
and symmetry, respectively, through the centre of the box which is inherited from 
the base flow, 

-O(-x ,  -y) = - O h  y), 

+G(-x ,  -y) = +G(x, y). 

We need only refer to properties on half the box, the triangle formed by cutting the 
box along a diagonal, say. There are four vorticity disturbances identified by their 
centres and it takes four oscillation periods for one to travel completely around the 
box. On the other hand, there are five thermal disturbances and each one requires 
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(b) 

FIQURE 2 .  The disturbance streamlines ( a )  and isotherms ( b )  plotted a t  eight equal intervals of one 
oscillation period with time progressing in the clockwise sense. The base-state streamlines (a) and 
isotherms (b)  are plotted at the centre ; circulation of the streamlines is clockwise. 

five periods to return to its original position. Thus, the average wave speed of the 
deviations in vorticity is that of thermal disturbances and in every cycle the 
thermals ‘slip ’ relative to the vorticity deviations. This occurs along the adiabatic 
sidewall and can best be understood using the relationship between vorticity 
disturbance 6 and temperature disturbance 0, 

obtained by taking the curl of ( l o b ) .  At the centre of a thermal disturbance, 

so that thermal Acentres necessarily lie along on a locus of points where the vorticity 
is zero. Since aO/ay =k 0 in general along the horizontal heat-transfer surfaces the 
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FIGURE 3 ( a ) .  For caption see next page. 

thermal centres are forced away from the wall to  the internal boundaries between 
vorticity cells, whereas along the adiabatic surfaces these centres can also be a t  the 
wall. As evident from figure ( 2 b )  wall-bound disturbances do occur, and for these a 
vorticity disturbance can ‘pass ’ the thermal disturbance. 

The flow field and isotherms seen in experiment or via conventional numerical 
simulation for R above but close to oscillation onset are a superposition of the 
disturbances of figure 2 on the base states. This influence of the disturbances is shown 
in figure 3 for an arbitrarily chosen value of E in (S), E = 0.08. A comparison with the 
flow fields reported by Caltagirone (1975), his figure 6, Frick & Muller (1983), their 
figure 2, and Kimura et al. (1986), their figure 3, for Rayleigh numbers significantly 
above R, yields not only a quick qualitative identification of these instabilities but 
suggests that the linear superposition gives a good approximation for a wide range 
of R > R,. 

The exact disturbance solution, figure 2, clearly shows the instability as one in 
which thermal ‘blobs’ or regions of excess temperature detach from the bottom 
surface, grow in size while diffusing in strength as they move vertically across the 
layer, reach the top surface and begin to strengthen and contract as they move 
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(4 

FIQURE 3. Streamlines (a)  and isotherms ( b )  constructed by superposing the disturbance field with 
amplitude 8 = 0.08 on the base-state field (centre plot). The progression in time is clockwise shown 
at the same intervals as in figure 2. 

horizontally. Both thermal-layer instability and cyclic triggering are part of the 
process ; to this extent the conclusions of earlier studies are confirmed. On the other 
hand, the role of the base-state thermal boundary layer is still unclear. What 
determines the critical strength it must reach before a disturbance will persist and 
propagate ? Note that detachement from the horizontal surface actually occurs a t  the 
wall where base-state gradients are the weakest suggesting that the ‘triggering ’ 
mechanism due to  the turning base flow (confinement by the wall) may be relatively 
more important. What determines the characteristic size (wavenumber) of the 
disturbance ? Are the thermal disturbances, the vorticity disturbances, or neither 
convected with the base flow Z These questions are answered by the more detailed 
analysis of the next sections in which a model of the disturbances as structures 
determined independently of their propagation is developed. 
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0 

6.00 
50.29 
95.90 

-140.40 - 

ill ill ill 
-9.16 - 6.00 9.16 
45.90 44.40 48.70 
86.25 82.78 92.40 

- 141.50 - 133.30 - 132.20 

TABLE 4. Contributions of the exact solution for the square box to the spatially averaged 
energy equation (13) a t  several instants during the oscillation period 

5. Structurepropagation decomposition 
The disturbance equation (1Oc) can be re-expressed as 

(12a) 
g + ZV-ve = Q,, 
at 

V 2 0 - R h  (VB-k)  = Q,, (12b) 

where the hats on the disturbance quantities have been dropped, and where the 
function 0 represents the coupling between the ‘propagation ’ equation (12 a )  and the 
‘structure’ equation (12b). We outline the evidence from the exact solution that 
suggests that the coupling is relatively small. This evidence comes from several 
sources : a spatially averaged balance, a pointwise balance and a scaling balance 
which is implied by (12a), to be discussed a t  the end of this section. 

The spatially averaged equations are obtained by multiplying (12 a )  and (12 b) by 
8, integrating over the box, denoted by ( * ) ,  and using the boundary conditions to 
obtain 

I d  
2 dt --w) = (m),  

- ( (V8)2) - Ri(Ov* Ve) + R i ( 8 ~ .  k) = (OQ,). (13b) 

Table 4 lists the magnitudes of the terms in (13) evaluated a t  the exact solution. The 
coupling term (80) always contributes less than 7 % of the largest term (the thermal 
dissipation ((VO)’)). 

At a fixed time, a pointwise evaluation of Q, shows that, except in the centre of 
thermal disturbances where VO is small, and in the stably stratified core region where 
v is small, Q, is less than 10% of the largest contributing term in (12). 

This empirical evidence leads us to neglect the coupling between the first-order 
wave equation (12a) and the elliptic equation (12 b),  consistent with the goal of a first 
approximation to the physics. With Q, = 0, (12a) can be rewritten in terms of the 
speed along a base-state streamline v f  and the temperature variation along the 
streamline measured by the coordinate s ,  

Since, in general, v’ is not constant along streamlines, this equation determines a 
distortion of disturbance 8; it does not involve propagation only. Furthermore, the 
evolution determined by (14) along various streamlines may not be compatible with 
(12b) with Q, = 0. Neglecting Q, makes the system overdetermined and no longer well 
posed. 
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h a Q, h l @ ? L  a R,* 
0.50 5.0 9.16 330.3 
0.67 5.0 7.96 353.1 
0.75 5.0 7.90 364.4 
1 .00 5 .O 7.88 390.7 
1.50 5.0 7.72 428.5 

TABLE 5. The scaling predicted by the propagation equation (15) evaluated using the exact 
solution is shown in column 3. Wavenumbers a are measured from the exact solutions. The critical 
Rayleigh number R,* defined to be the value R* (equation (214)  corresponding to R = R,, is listed 
in column 4. 

On the other hand, there is only a difference of a factor of three between maximum 
and minimum speeds along the same streamline away from the walls suggesting that 
the influence of (14) on evolution (distortion) may be relatively small. In  what 
follows we assume some typical streamline exists along which 

where v* is the average velocity around the streamline (a constant), and along which 
a one-dimensional version of (12 b)  with Q, = 0 applies. With these changes a well- 
posed system is recovered whereby the time-independent equation delivers the 
disturbance structure which can then be treated as an initial condition in the 
propagation equation (15). 

As a check on the approximation of (15) we use the exact solution to scale the 
terms in (15) as they depend on aspect ratio h and examine the balance of these 
terms. We write estimates 

where e” is a characteristic magnitude of the disturbance, SZ, is the frequency of 
oscillation, is the maximum value of the stream function, and 01 is the 
wavenumber of the disturbance along the characteristic streamline. The values SZ, 
and are known from the solution and 01 is the integer corresponding to the 
number of pairs of thermal cells as measured from figure 2 (b)  and analogous plots for 
the other aspect ratios. In  column 3 of table 5, the ratio of the two terms in (15) are 
compared for various aspect ratios. Excluding the case h = 0.5, the ratios are within 
4 % of one another suggesting they are independent of h, as is necessary for (15) to 
be a reasonable approximation. Examination of the disturbance structure for h = 0.5 
shows that, in contrast to other geometries considered, the sidewalls are so close that 
the ascending and descending vorticity disturbances are significantly distorted as 
they pass one another. We suspect that  this interaction destroys the balance implied 

In summary, we argue from the numerical solution that as a first approximation 
the propagation of the disturbance is independent of the balance determining the 
structure of the disturbance (@ = 0 in equation (12)). The propagation can then be 
modelled as a one-dimensional wave equation with constant coefficients on some 
characteristic streamline loop. To close the model system a one-dimensional version 
of (12b) on the same domain is needed. The next two sections are devoted to the 
development of this approximation. 

by (15). 
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6. Model I 

eliminated through the momentum equation ( l o b )  is written 
The decoupled structure equation ( (12b)  with @ = 0) with disturbance velocity 

V2B- RB(VB. k - 1 )  -k RiVp. (VQ- k) = 0. (16)  

To transform (16)  from a two-dimensional rectangular domain to a one-dimensional 
loop domain in a rational way requires some averaging procedure which eliminates 
variations locally orthogonal to the loop coordinate. However, this may not be 
possible, a t  least in a uniform way, since, for example, conduction orthogonal to the 
streamline cannot be neglected at  the centre of the thermal disturbance cells. This 
might require a transformation to an annulus or to a loop with ‘thickness’. Various 
techniques are available for a rational reduction of dimension and transplantation of 
domain ; these include the multiple-scales (spatial) and ‘ director ’ theory approach 
(e.g. Ericksen & Truesdell 1958) and either of these might be rigorously justified 
through a centre-manifold result for elliptic equations as has been successful for 
Saint-Venant problems (Mielke 1987). However, we already have an exact solution 
and since the aim of our model is to interpret that solution the ad hoc approach will 
suffice. 

In this spirit we build a first model, Model I, by assuming that the contribution of 
the pressure gradient to the disturbance velocity is small relative to the contribution 
of the buoyancy term. Consequently, the third term in (16)  is small relative to the 
second term and we shall neglect it for the time being. The derivative @/ay is 
assumed given as a function of x and y and therefore can be evaluated on a loop 
domain ; we are left with only the task of transforming the Laplacian term to the loop 
variable. 

We first specialize the loop to a circle marked by the coordinates 0 < 5 < 2n: 
thereby neglecting the asymmetry about the box midline which the ‘typical’ 
streamline must possess (figure 2 a ,  centre). A correspondence between the Laplacian 
and the second-order derivative dzO/dC2 is assumed, 

where the scaling factor pZ varies with the aspect ratio and wavenumber. To 
determine the dependence of fl‘ on h the single roll-cell disturbance on the 
rectangular domain and the disturbance on the circle with wavenumber unity are 
identified. The roll-cell (equation ( 5 4 ,  i = [ l ,  11) solves the equation 

+($+ i ) e ,  

with the boundary conditions of the original system ( l ) ,  and the corresponding 
disturbance on the circle solves 

with periodic boundary conditions. Comparing (17b) and (17c) shows flz is 
proportional to x 2 (  l /h2  + 1 ) .  The constant of proportionality is unity for the single 
cell and decreases from unity as the wavenumber of 0 increases ; the dependence is 
weak. We evaluate i t  using the exact solution a t  R, = 390 and fix its value for the 
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FIGURE 4. Isotherms of the steady-state temperature field relative to the linear conduction profile 
at the onset of the oscillatory instability. Solid lines represent surpluses and dashed lines deficits 
from the linear profile. Level curves are at, intervals A0 = 0.06 a>d [Olrnax = 0.56. The dot-dashed 
lines are t,he locus of vanishing vertical temperature gradient (%lay = 0). 

rest of the analysis. An average of /I2, weighted by amplitude, for the ten largest 
contributions to the disturbance eigenvectors (table 2 )  leads to  

(18) 

Model I can now be written 

where periodicity of 0 and d0/d( in ( are the boundary conditions. Equation (19) 
is a Mathieu-Hill equation whose well-known properties include the existence of 
periodic solutions €or discrete values of R only. 

The remainder of this section is devoted to solving (19) for typical @-fields. As 
noted in the discussion of the exact solution, both base-state temperature field and 
disturbances share an antisymmetry with respect to the centre of the box. We 
incorporate this symmetry in Model I restricting to 0 < < < x with antisymmetric 
boundary conditions. The periodic function aslay(<) can be deduced from the exact 
solution $(x, y) which is shown in figure 4 for R, = 390.7. Along a typical streamline 
(one that passes near the centres of the disturbance isotherms) has two zeros 
for 0 < < x and a ‘sawtooth ’ shape. We write this function as an amplitude A bimes 
the shape f,  

(20a) a 8  
- = Af(Y), 
aY 

where f(5) E y-’[sin 2C+h sin4<++ sin6a,  ( g o b )  

y = max &in 25++ sin 4<+4 sin 651, W C )  
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A 

0 80 160 240 320 400 480 560 
R* 

FIGURE 5. The locus of periodic solutions predicted by Model I (solid lines) with the results from 
the exact solution for various aspect ratios: A, h = 0.5; 0 ,  0.67; +, 0.75; 0, 1.0; x ,  1.5. The 
dashed curve is the function A@*)  estimated from the isotherms of the exact solution (circles) for 
the square box. 

The amplitude A is treated as a parameter ; i t  must vary with aspect ratio as well as 
R. The angle 5 is measured clockwise from the diagonal which intersects the upper 
right corner of the square. A final change of independent variable, 5 EE xz, brings (19) 
into the form 

where 

d28 
dz2 
- + O . ~ ~ R * B ( ~ - A ~ ( T C Z ) )  = 0, 

de d0 
dz dz e(0) = -0(1), -(O) = --(l), 

2R R* E- 

l / h 2  + l ’ 
Equation (21) has periodic solutions with n = 1 ,  3 and 5 zeros for the parameter 

pairs ( A ,  R*) shown in figure 5 .  The ‘tongues’ which reach down to just touch the 
R*-axis are typical of this well-known class of equations often studied in the context 
of parametrically excited oscillators. At R* = 390.7 the only structures to fit on the 
full circle for small to moderate A have wavenumber n = 5 in correspondence with 
results for the square box. The scaled critical Rayleigh parameter R: for the range 
of aspect ratios is listed in the last column in table 5.  At each of the geometries, (21) 
by way of figure 5 predicts a structure with wavenumber n = 5 in agreement with the 
exact solutions. We note, however, that this scaling of the ‘measured’ R,-values is 
not expected to bring them into coincidence. As suggested by (21) it includes the 
influence of h on thermal diffusion of disturbances but not on the critical strength of 
the base state @. Only if the critical strength of the base-state thermal boundary layer 
were independent of h would the scaling (21 d )  be expected to map the R,-values on 
to one another. As expected physically and as suggested by the ‘measured ’ points on 
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figure 5 the taller the box the greater the boundary-layer strength required for 
instability. 

From figure 5 ,  a t  R* = R; there are several values of A for which periodic solutions 
‘fit’ on the circle. One of these values compares favourably in order of magnitude 
with the value of la$/laylmax from the exact solution for h = 1.  In  the light of the 
approximations embodied in it, a prediction of the wavenumber is all that can be 
reasonably expected of the model. For example, we know that the thermal- 
disturbance structure evolves significantly throughout the cycle (figure 2 )  while the 
structure predicted by (21) propagates without distortion by the model ; hence any 
similarity of structure predicted by (21) with that of the exact solution (at some 
particular instant) would be fortuitous. Therefore, we do not present the structures. 

Although Model I suggests how the disturbance wavenumber can be accounted for 
if the critical value R, is known, i t  leaves unanswered the more important question 
what determines R, Z ’ 

7. Model I1 
The structure-propagation decomposition is evidently a consequence of the 

oscillatory instability; in other words, it is a condition necessary in order that the 
instability occur. This section tests the idea that the decoupling of structure and 
propagation may be the defining characteristic of the unstable disturbances (i.e. a 
sufficient condition). If so, it could be used to predict the destabilizing oscillations. 
I n  other words, suppose that a necessary and sufficient condition for the instability 
is that the structure equation (16) be satisfied. Then, given the function V$ as it 
changes with increasing R from convection onset, the value R = R, would appear as 
the first value a t  which (16) could be satisfied ; R = R, would be the first eigenvalue 
of (16). In  the context of Model I for fixed aspect ratio, the thermal-boundary-layer 
strength is known as a function of the Rayleigh number in the form A(R*). This 
function can be plotted on figure 5 and the first intersection with increasing R* of this 
curve with a ‘tongue ’ represents the point of instability. By this construction Model 
I predicts instability with wavenumber n = 3 and a t  a Rayleigh number R* far below 
the observed value. However, Model I neglects the contribution of the pressure field 
to the disturbance velocity without justification. We now remedy this deficiency in 
order to make the model more predictive. 

The pressure-field convection term of (16) can be split into two contributions, 

The second term is much smaller than the first for the range of R of interest since 
aQ/ax 4 a$//ay over most of the box (cf. figure 4), and where @/ax is relatively large 
i3p/ax is small. Consequently, Model I1 neglects this contribution. 

Properties of ap/ay will be developed with the aim of transplanting that term to 
the circle domain. The idea to use the form of the Fourier series expression for 
aplay as a function of the temperature disturbance 8 to motivate the form for the 
transplanted functional in terms of the corresponding Fourier expansion on a circle 
domain. Recall that the pressure disturbance is a linear functional of the temperature 
disturbance and that the integral operator of (4) can be expressed explicitly in a 
Fourier expansion. Using this expansion the action of i3pplay on a temperature 
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disturbance 0, written in terms of the basis functions (59, 

m 

e = c cisi, 
i-1 

yields (24) 

and 

serve to define the wavenumbers ui and uyi. We note that the following two 
properties of F ,  which are readily apparent, hold for all 8 satisfying the boundary 
conditions : 

IF[O]l < 181 since Iayil < 101~1 for all i ,  (26a) 

(BF[B]) 2 0. (26b) 

F can be re-expressed using the orthogonality of the basis functions ( 5 i )  which are 

The qualitative behaviour of the functional F is most apparent from the 
representation (24). Two influences can be distinguished. First, the resealing of the 
components causes a phase shift. To see this consider 8 = 8, +8,, where 8, and 8, are 
eigenfunctions from the set (5i) with wavenumbers a = [2, 4) and b = [4, 21, for 
example. Now, 

5F[8,+8,] = 48,+0,, 

which gives a shift from a structure with equal parts 6, and 8, to one with parts in 
the ratio 4 : 1. A sketch of the corresponding roll-cell structures shows a phase shift 
of cells around the square ; regions of upfiow and downflow are interchanged. The 
second influence of F is the accentuation of the wavenumber in t$e vertical direction ; 
the pressure gradient induced by the requirement of continuity significantly 
influences structures along the vertical walls, in contrast to the buoyancy force which 
dominates structures along the horizontal surfaces. 

To transplant to the new domain representation (27) is most convenient. The 
functions Bi (5i) transform to Fourier functions on the circle, 0 < 5 ,< 2n, 

esl = n-t sin 15, (29a) 

(29b) e,, = n-t COSZQ I = 1, 2, 3, ..., 
where the constant B0 does not appear since its analogue in the square domain is 
prohibited by boundary conditions. Convolution functionals of 8 are introduced : 

- 
8,, = r1J; sin n(5- t )  8(t)  dt, 

- 
8,, E zp1[ cosn(C-t)@(t)dt, n = 1, ..., CO. 

FLM 19ti 



284 P. H .  Xteen a n d  C. K .  A i d u n  

The sum of cosine transforms reproduces the Fourier expansion of 8, 

m W 

O K )  = c k ( 5 )  = c (an8sn+bn8, , )>  (31a ,  b) 
n=1 n=l 

and the sine transform shifts the phase of each component of 8 by &r, 

m m 

e$(C) C e s n ( C )  = c (bnosn-anowz), (31 c ,  d )  
n-1 n-1 

Only under special symmetries does the functional 0+Jg) = 8(C-$) ;I nevertheless, 
the action of 8$ produces a phase distortion while preserving the norm. We exploit 
this phase action and introduce the approximation (consistent with ( 1 7 a ) )  

in order to replace 

with 

(%I.) i = 1 ,  ..., co 
a y 2  a ' (33)  

(34)  

The factor h in (32)  arises because a28/i3y2 is a fraction of V28 which is known at 
convection onset ( A  = t )  and which can be estimated at oscillation onset from table 
2 ( A  = 0.6). However, we shall treat h as a control parameter which measures the 
strength of the influence of dp/ay. Using ( 1 7 a )  again, (27)  transplants to 

= q A C ) .  (356)  

Equation (35b)  follows from ( 3 5 a )  using the properties of Fourier expansion (31 b, d ) .  
An arbitrary phase shift can be accommodated by generalizing ( 3 1 ) ,  

8,, = sinSB,, +c0s68,~, n = I ,  ..., co, ( 3 6 a )  

and 
W 

8,([) = Z Osn = sin 8133 + cos SO. 
n=1 

This leads to the generalization of F ,  

motivated by calculations analogous to those that lead to (35b) .  
Straightforward estimates show that 

to be contrasted with properties (26)  of F. I n  order to illustrate a further property 
of F, we obtain a preliminary version of Model 11. Use &F, to represent applay in ( 2 2 ) ,  
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neglect the aplax-term, and transplant the other terms in (16) following Model I to 
obtain, 

The phase-shift contribution to F, eliminates periodic solutions to (39) when 
a$/ay = 0. To see this, multiply (39) (with a$/ay = 0) by dO/d[ and rearrange to 
find 

Integrate (40) from 5 = 0 to  5 = ix, 

$32[($).+R(l-h c 0 s 6 ) 8 ~  = Rh 2nd0 -8i.d~ I:' d5 

and note that through properties of Bin, (31c), 

where equality holds if and only if 8 = 0. Equation (41) and inequality (42) show that 
for 6 + 0, 7c the only periodic solution is the trivial solution. This contrasts with the 
behaviour of Model I which possesses periodic solutions for A = 0 (the 'tongues ' of 
figure 5 touch the R*-axis). 

The development so far has accounted for the phase-shift action of F through 
approximation (32) but has not included the accentuation of y-wavenumbers. To do 
so, parts of the circle must correspond to the vertical sides of the box. Since the 
reference 5 = 0 is the upper right diagonal, we take the intervals 0 < 5 < and 
7c < 5 < gx to represent the vertical sidewalls. New convolution functionals of 8 are 
introduced , 

gs, = 7c-' l x k ( t )  sin n(g-t) 8(t) dt, (43a) 

gc, = n-l ln k ( t )  cos n(5- t) O(t)  dt, (43 b )  

n =  1,  2, ...) 00, 

where 0 < k(5) < 1 filters out wavenumber contributions from 'non-vertical' 
intervals of the box ; it  acts as a characteristic function of the intervals 0 < g < in 
and x < 5 < Zx. The corresponding series are defined as 

and 

The approximation for the quantity - (33) may now be revised. The functional 8g in 
expression (34) is replaced by 0%; this leads to a new transplantation of F ,  
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Equation (45b) follows from (45a) by Fourier expansion of 0 in Osl, OcL,  (29), 
definitions (43a), along with straightforward trigonometric manipulation. In a way 
analogous to the derivation of (37), F is generalized to an arbitrary phase shift S, 

h-iP,[e] = g8 = sin ~8~ + cos 86. (4th b) 

IP8[ell < h l e l .  (47) 

The following property of P,, analogous to that of F ,  can be verified easily: 

However, further properties of P,  analogous to inequality (38b) or to inequality (42) 
are not direct. On the other hand, the behaviour of P, as reflected by the behaviour 
of Model 11, obtained numerically and discussed below, shows that P,  prohibits 
periodic solutions for i%/ay = 0. 

The final version of Model I1 uses R+P8 to represent ap/ay in (22), and otherwise 
follows the development of the preliminary version, (37)) to obtain 

This linear integrowdifferential equation is the Mathieu-Hill equation (19) modified 
by the functional Pa. We expect its solutions to be somewhat perturbed from those 
of the Mathieu-Hill equation. 

We examine a particular realization of Model I1 in order to illustrate the nature 
of the modifications that P,  induces. As in the realization of Model I, the antisymmetry 
about the centre of the box is incorporated in the solution of the half-circle and 
reflected to the other half. We again choose given by (20) and change variables, 
5 = nz, to obtain 

(49a) 
d2e 

~ + 0.67R*( 8 - A[ cos S6+ sin &?&I) (1 - Af(nz ) )  = 0, 
dx2 

de d e  
dx dz 

e(o) = -e(i), -(o) =--(I). 

In the realization of 6, through definitions (43), we choose k ( z )  = sin2 (.+a) which has 
the property $ <  k(z )  for 0 < z < $  thereby emphasizing wavenumbers on the 
‘vertical’ portions of the circle. The symmetry of k is consistent with boundary 
conditions (49b, c) provided the wavenumbers in the series, (44), are odd. In  order to 
compute the characteristics of (49) the series (44)is truncated to terms with n = 1,3 ,  
5, 7.  

The modified characteristics are plotted for 6 = in and h = 0.35 in figure 6. Only 
the relevant tongues n = 3 and n = 5 are shown. The value of 13 is chosen to illustrate 
the strongest influence of phase shift. The value of h is the smallest value for which 
the tongues lift far enough off the axis so that no solutions (for h = 1 )  fit on the loop 
until the A(R*)-curve intersects the n = 5 tongue. As h is further increased toward 
values comparable with estimates of A from the exact solution (0.5 < h < 0.6) the 
tongues lift further from the axis and the number of zeros of solutions on parts of the 
tongue boundaries are modified. What began as the n = 3 tongue develops pieces 
with five zeros and what was the n = 5 tongue has portions where there are seven 
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FIGURE 6. The locus of periodic solutions with n = 3 and n = 5 zeros predicted by Model I1 
(solid lines) with parameter values A = 0.35 and S = $A. Other symbols are as in figure 5. 

zeros. Nevertheless, the A@*)-curve first crosses a tongue at an n = 5 solution and 
the qualitative result of figure 6 persists. As 6 varies from in the tongues shift lower 
and slightly to the right or left. For 6 = 0 and 6 = n the structure of figure 5 is 
recovered with a shift of the R*-axis and a slight distortion due to k ( z ) .  

The shape of the function k ( z )  only weakly influences the pictures although the 
emphasis of the y-wavenumbers seems to accentuate the lifting action of the phase 
shift. The truncation of the convolution integrals (44) a t  term n = 7 has little effect 
on figure 6 as verified by lowering the truncation order to n = 5. The curves in figure 
5 and 6 were calculated using the branch-tracing capability provided by the AUTO 
software. 

8. Discussion and conclusions 
The exact solution shows that five thermal disturbance cells circulate outside the 

nearly motionless core of the steady base flow which they destabilize. The correlation 
between base-state velocity, the wavelength of the thermal disturbance, and the 
oscillation frequency, presented in table 5, suggests that the thermal disturbances 
travel on average with the base flow, On the other hand, the four vorticity 
disturbances complete a cycle in the same time as the thermals and therefore travel 
with greater wave speed. Vorticity disturbances can pass the thermal disturbances 
along the adiabatic sidewalls whenever the centres of the thermals are located along 
the wall. 

Evidence suggests that the travelling-wave instability is characterized by a nearly 
time-independent norm of its ‘energy’, an observation which may be useful in 
distinguishing the various oscillatory instabilities both calculated (Prick & Muller 
1983) and recorded in experiment (Koster & Muller 1984). This weak coupling 
between the propagation of the disturbance and its structure suggests a mechanism 
in which the structure is determined independently, an idea developed through the 
framework of Models I and 11. 

Model I correlates thermal-disturbance size (wavenumber) with strength of the 
base-state thermal layer for various aspect ratios assuming a balance between 
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dissipation of the cell by thermal diffusion and concentration of heat by convection 
due to disturbance velocity or, more precisely, that part of the disturbance velocity 
generated by the buoyancy force. The structure of Model I indicates that only certain 
Rayleigh numbers allow a balance between conduction and convection with a 
resulting cell size that will fit in the box. At these special Rayleigh numbers 
wavetrains on the circle with wavenumbers n = 3 , 5 ,  and so on can occur. According 
to the model they exist no matter what the strength of the base-state thermal layer 
A .  Furthermore, even for a fixed strength A the size is not uniquely determined. 
However, by fixing the Rayleigh number a t  the values of R, known from the exact 
solutions, the model gives thermal-layer strengths in good agreement with the exact 
values. This success of Model I suggest that it captures the dominant balance 
governing disturbance structure. This balance distinguishes the influence of the 
linear conduction profile, whose strength is proportional to Rayleigh number, and 
the steady-state boundary layer whose strength is measured by A .  It shows that the 
Rayleigh number is of primary importance in generating buoyancy forces sufficient 
for convection velocities that can balance conduction. The strength A is a secondary 
influence. Nevertheless, Model I does not provide a complete explanation of 
wavenumber selection ; it cannot explain, for example, why wavenumber a = 5 
rather than 01 = 3 is realized physically. 

In the case of the pure fluid layer infinite in horizontal extent with no-slip 
boundaries a t  top and bottom Bolton, Busse & Clever (1986) have calculated 
' oscillatory blob ' instabilities which, although strictly three-dimensional, have 
disturbance structures with a striking resemblance to those of figure 2. These blobs 
have wavenumbers which vary from 1 to 4 and for certain ranges of Prandtl number 
can be the most dangerous disturbances. These authors show plots of the structures 
for several wavenumbers but do not discuss the mechanism of wavenumber selection 
for this class of disturbances. Indeed, we do not know of any previous work in the 
context of the Rayleigh-Be'nard, Hele-Shaw, or the porous-media problem that 
addresses the detailed physics of wavenumber selection. 

Model I1 attempts to remedy deficiencies of Model I by accounting for the vertical 
pressure gradient. The gradient is a functional of the thermal disturbance field and 
has a concise expression in terms of its Fourier expansion. This exact representation 
shows that the pressure gradient shifts the phase of the disturbance cells with an 
amplitude dependent on the fraction of vertical to horizontal structure in the 
thermal field. Model I1 uses an approximation to the exact functional that preserves 
some average properties but that is neither a systematic nor a rational one. 
Nevertheless, it demonstrates how the pressure term might suppress the formation 
of disturbance cells for weak base-state thermal layers. In particular, if the thermal 
layer is not sufficiently strong the pressure field will disperse the cells along the 
vertical boundaries, weakening them to the extent that they cannot be sustained by 
the disturbance velocity. As the thermal-layer strength increases with Rayleigh 
number, the cells first fit on the circle with wavenumber 01 = 5 .  Here, wavenumber 
selection depends directly on Rayleigh number through the conduction profile 
(owing to the constraint of the circular domain) and indirectly through the thermal- 
layer strength. The data from the exact solutions are not in disagreement with this 
picture. Yet the loose connection between model and the governing equations makes 
stronger statements inappropriate ; we present this picture as a hypothesis. 

The one-dimensional model, based on the exact integro-differential equation 
governing thermal disturbances, has several noteworthy features. Since the velocity 
field has been eliminated from the exact equation, transplantation of a vector field 
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from the rectangle to the circle is circumvented. As a result, the coupling between 
momentum and energy is preserved in the simplicity of the one-dimensional model ; 
we need not be concerned that the velocity induced by the one-dimensional 
temperature solution does not satisfy continuity on the one-dimensional domain. 
Other features of the model which distinguish it from conventional convection-loop 
models are the influence that the adiabatic sidewalls and the pressure field have on 
the dynamics as well as the dominant role of conduction in the direction of the loop 
coordinate. 

I n  summary, we present evidence for a rather simple picture of instability and 
wavenumber selection. The decay of hot spots is balanced by self-induced buoyancy- 
driven convection to  produce a cell size that will fit on a loop for certain Rayleigh 
numbers. The influence of the pressure gradient on the cells along the vertical 
sidewalls effectively enhances the diffusion and thereby stabilizes the flow to low- 
wavenumber disturbances when thermal- boundary-layer strengths are moderate. 

The significance of these results may be viewed from several perspectives. It may 
be argued that the particular mechanism we outline is of limited relevance to higher 
instabilities in other flows because of rather special features of the porous-media 
problem (two-dimensional, Darcy’s law, slippery walls, etc.). On the other hand, it 
is one of a few hydrodynamic contexts (problems) in which a detailed understanding 
of the interaction between non-trivial spatial structures and unsteady temporal 
behaviour has been developed and, moreover, the quadratic nonlinearity responsible 
for this interaction is in some sense a prototype nonlinearity for the class of 
hydrodynamic problems where convective nonlinearities dominate (including the 
convection of momentum). On the level of methodology, the branch-tracing 
approach (continuation) is flexible and can be generalized to capture higher-order 
transitions provided the dynamics of the bifurcating solution has a known 
mathematical structure (e.g. certain types of break-up of a torus and most 
transitions to chaos cannot be handled yet). Finally, on yet another level, our 
analysis might serve as an example in which a disciplined analytic modelling based 
on a numerical solution leads to a simplified physical picture; even reliable 
numberical solutions may be of little use on their own without ‘post-modelling ’. 
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